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ON AN INTEGRABLE CASE OF PERTURBED KEPLERIAN MOTION* 

V.A. KUZ'MINYKH 

A general solution of a differential vector equation of PerturbedKeplerian 

motion is derived for the case when the position vector and perturbing 

acceleration vector are collinear. A variable change is employed, in 

which the new independent variable is expressed in terms of the initial 

values of the phase variables and time, using the elliptical Jacobi 

function. The two-point boundary value problem for the initial equation 

is reduced to the Cauchy problem. A parametric representationisobtained 

for the regularized trajectory of motion of a material point under the 

action of a centrdl force. 

Let us consider a differential vector equation of perturbed Keplerian motion 

1" == -prr-3 7 wr (1) 

in which r, I" are the vectors of position and acceleration of a material point, II is the 

gravitational constant of the centre of attractionand (c is a constant. 

The differential Eq.(l) determines the intermediate orbits of a geocentric satellite 

four-body problem /l/, and of the known geocentric planetary problem of n bodies /2/. 

A general integral of the equation of the type (1) appears in a number of papers (e.g. 

in /3/l, but is not solved for the required coordinates of the vector '(z,y,z). 
we shall assume that the following initial conditions are specified in the initial co- 

ordinate system for the instant t= t,: 

r (t") (I"! Y,, Z"), r' (lo) = (To'. Y"', 20.1. 

Let us bring into our discussion the constant vector of angular momentum and the 
oscillating Laplace vector 

h = Ir, r'l = (h,, I/,, h,). I = [r’, h] - pr,_-’ 

The differential equation for 1 now takes the form 

1' :_ -l,m',xr [I. h] 
____-- 
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To solve this equation in finite form, is its best to introduce a new parameter, namely 

the regular time E. defined by the differential relation 

dE = --y-‘W’dt (2) 

Then, provided that lu#O, h#O, the equivalent system of linear differential equations 

with constant coefficients dlldE= II,hl will integrate according to the rules of operational 

calculus /4/. 
As a result we obtain 

1, (5) = I,, cm h5. f (l,,h, - I,,h,) he1 sin II: + (l,,h12 T l,,hIhs + 

l,,h,h,) hP (1 - cm h5) (1 2 3) 

where the quantities 1,, I,, 1,, II,, I,,, 1,, are, respectively, the running and initial values 

components of the Laplace vector, and the relations not written out can be obtained by 

permutation of the indices 1, 2, 3. 

In what follows we shall make use of the energy integral 

From (4) we obtain 

(3) 

of the 

cyclic 

(4) 

Let us now pass to the process of determining the values of the parameter 5. By virtue 
of formula (2)wehave the integral 

(6) 

Substituting (3) and (4) into (5) we obtain 

r = (A cosz hE -+ B sin hE cm hk + C cm ht + D sin hg -1 C)‘/z 

where A,B,C,D,G are constant coefficients. After carrying out the trigonometric substitution 
g= !.&larctgo, the integral in (a) becomes an elliptic type integral in IX 

where ((D,(a) is a fourth-degree polynomial. 

Taking (7) into account, we write relation (6) in the form 

From the theory of elliptic integrals it follows that by carrying out the substitution 

0 = (P + Vl)i(l + rl), we arrive at the standard expansion of the integrand 

11 

(e - P) s dt) 
R Ix PI2 + 8 (q* + WP 

= + (f. - 1) 

and from formula (0) we obtain /5/ 

q=btn awh J/X 
2 (q - P) P 

(10 -t) + F (a, k) 

where F(a. k) is an incomplete elliptic integral of the first kind. 
We note that the quantities a,~ and the modulus of the elliptic function ta(.) are as 

follows: 

Next, using the relations of /3/ and formulas (2) and (5), we find the true anomaly f3 
from the values 

hwr dr 

The existing formulas /3/ allow us to determinethelongitude of the ascending node, the 
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argument ofthepericentre, real longitude, and then, using the relations obtained, the co- 
ordinates and velocity components of the material point, 

Let us formulate the boundary value problem of determining the solution of Eq.(l) in 
terms of the given values of r(t,? = rO, r (Q- rl and 41-==tl-fg. We shall assume that the vectors 
r. and r1 are not collinear. It must be noted that an analogous boundary value problem was 
solved in detail for Keplerian motion in /2/. Let us determine ' z<, 3 !I”‘> 2”‘. Using the relation 
/3/ 1.' : Mr-‘, M = [IL+ i- 2iiP T 21~ - hz]‘.‘” and the integral of kinematic momentum r'8‘ = IL, we obtain 
the following relations: 

We note that the angle between the vectors r,, and P, is equal to Amy A%+Znn where m 
is an integer. Using the normal elliptic integrals I,,[_, /6/, we shall write relations (9) 
in the form 

The relations obtained form a system of non-linear equations in h and il. Letusdetermine 
the coefficient of proportionality c= h-'/[r,,r,j/, and then, using t‘ne condition of codirection- 
ality of h and [r,,, r,l, find h = c-l [ro, rJ. Next, using the quantities %J. Y,, %, 4, h,, hJ, rl)’ we 

obtain, in accordance with /3/, .Q‘,Y~‘,zo'. 

In conclusion we shall consider the motion of a material point whose acceleration has a 

central component only 
f(r) :m -_!l@ 4 g (/.) 

Let us write the energy integral in the form 
z‘2 '_ !,'2 j- ~'2 = ?,<r-l ~ 21' (r) A- ZN, I.(r) = - \ fi (r) dr 

Using the KS-transformation /7/ (x, {,, L. 0)T -= I, (u) " , we obtain the regularized equation 

(the Zundman variable s is used as the argument). 

As a result of the substitution 

dr I-= (I --- I/-’ (1. (13) - uzg ($))I”* 1 ds 1 

the solution of Eq.(lO) can be written in the reyularized Keplerian form /7/ 

" (T) - co (--'l*HT2) I," -1. TC, (-'iJZz2) (LIZ')0 

When &>O, we obtain from the second equation of (10) and (11) 

(11) 

(1 a 

Relations (11) and (12) determine the exact parametric solution of the Cauchy problem 

Of Eq. (10). 

The author thanks V.G. Demin and I. I. Kosenko for assessing the main results of this 

paper during a seminar on classical mechanics at Moscow State University. 
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